3.251 \(\int \frac{\cos ^{\frac{9}{2}}(c+d x)}{(a+a \cos (c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=254 \[ -\frac{259 \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{192 a^2 d (a \cos (c+d x)+a)^{3/2}}-\frac{7 \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{7/2} d}+\frac{189 \sin (c+d x) \sqrt{\cos (c+d x)}}{64 a^3 d \sqrt{a \cos (c+d x)+a}}+\frac{637 \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{64 \sqrt{2} a^{7/2} d}-\frac{\sin (c+d x) \cos ^{\frac{7}{2}}(c+d x)}{6 d (a \cos (c+d x)+a)^{7/2}}-\frac{7 \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{16 a d (a \cos (c+d x)+a)^{5/2}} \]

[Out]

(-7*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(7/2)*d) + (637*ArcTan[(Sqrt[a]*Sin[c + d*x])/
(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(64*Sqrt[2]*a^(7/2)*d) - (Cos[c + d*x]^(7/2)*Sin[c + d
*x])/(6*d*(a + a*Cos[c + d*x])^(7/2)) - (7*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(5/2)
) - (259*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(192*a^2*d*(a + a*Cos[c + d*x])^(3/2)) + (189*Sqrt[Cos[c + d*x]]*Sin
[c + d*x])/(64*a^3*d*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.748577, antiderivative size = 254, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {2765, 2977, 2983, 2982, 2782, 205, 2774, 216} \[ -\frac{259 \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{192 a^2 d (a \cos (c+d x)+a)^{3/2}}-\frac{7 \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{7/2} d}+\frac{189 \sin (c+d x) \sqrt{\cos (c+d x)}}{64 a^3 d \sqrt{a \cos (c+d x)+a}}+\frac{637 \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{64 \sqrt{2} a^{7/2} d}-\frac{\sin (c+d x) \cos ^{\frac{7}{2}}(c+d x)}{6 d (a \cos (c+d x)+a)^{7/2}}-\frac{7 \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{16 a d (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(9/2)/(a + a*Cos[c + d*x])^(7/2),x]

[Out]

(-7*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(7/2)*d) + (637*ArcTan[(Sqrt[a]*Sin[c + d*x])/
(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(64*Sqrt[2]*a^(7/2)*d) - (Cos[c + d*x]^(7/2)*Sin[c + d
*x])/(6*d*(a + a*Cos[c + d*x])^(7/2)) - (7*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(5/2)
) - (259*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(192*a^2*d*(a + a*Cos[c + d*x])^(3/2)) + (189*Sqrt[Cos[c + d*x]]*Sin
[c + d*x])/(64*a^3*d*Sqrt[a + a*Cos[c + d*x]])

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2983

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(B*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(f*(
m + n + 1)), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*c*(
m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && (I
ntegerQ[n] || EqQ[m + 1/2, 0])

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{9}{2}}(c+d x)}{(a+a \cos (c+d x))^{7/2}} \, dx &=-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}-\frac{\int \frac{\cos ^{\frac{5}{2}}(c+d x) \left (\frac{7 a}{2}-7 a \cos (c+d x)\right )}{(a+a \cos (c+d x))^{5/2}} \, dx}{6 a^2}\\ &=-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}-\frac{7 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac{\int \frac{\cos ^{\frac{3}{2}}(c+d x) \left (\frac{105 a^2}{4}-\frac{77}{2} a^2 \cos (c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx}{24 a^4}\\ &=-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}-\frac{7 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac{259 \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2}}-\frac{\int \frac{\sqrt{\cos (c+d x)} \left (\frac{777 a^3}{8}-\frac{567}{4} a^3 \cos (c+d x)\right )}{\sqrt{a+a \cos (c+d x)}} \, dx}{48 a^6}\\ &=-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}-\frac{7 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac{259 \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2}}+\frac{189 \sqrt{\cos (c+d x)} \sin (c+d x)}{64 a^3 d \sqrt{a+a \cos (c+d x)}}-\frac{\int \frac{-\frac{567 a^4}{8}+168 a^4 \cos (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{48 a^7}\\ &=-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}-\frac{7 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac{259 \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2}}+\frac{189 \sqrt{\cos (c+d x)} \sin (c+d x)}{64 a^3 d \sqrt{a+a \cos (c+d x)}}-\frac{7 \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx}{2 a^4}+\frac{637 \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{128 a^3}\\ &=-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}-\frac{7 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac{259 \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2}}+\frac{189 \sqrt{\cos (c+d x)} \sin (c+d x)}{64 a^3 d \sqrt{a+a \cos (c+d x)}}+\frac{7 \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^4 d}-\frac{637 \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{64 a^2 d}\\ &=-\frac{7 \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^{7/2} d}+\frac{637 \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{64 \sqrt{2} a^{7/2} d}-\frac{\cos ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}-\frac{7 \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2}}-\frac{259 \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2}}+\frac{189 \sqrt{\cos (c+d x)} \sin (c+d x)}{64 a^3 d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.72162, size = 448, normalized size = 1.76 \[ \frac{\sqrt{\cos (c+d x)} \cos ^7\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (\frac{16 \sin \left (\frac{c}{2}\right ) \cos \left (\frac{d x}{2}\right )}{d}+\frac{16 \cos \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )}{d}+\frac{\sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right )}{3 d}-\frac{15 \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right )}{4 d}+\frac{523 \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right )}{24 d}+\frac{\tan \left (\frac{c}{2}\right ) \sec ^5\left (\frac{c}{2}+\frac{d x}{2}\right )}{3 d}-\frac{15 \tan \left (\frac{c}{2}\right ) \sec ^3\left (\frac{c}{2}+\frac{d x}{2}\right )}{4 d}+\frac{523 \tan \left (\frac{c}{2}\right ) \sec \left (\frac{c}{2}+\frac{d x}{2}\right )}{24 d}\right )}{(a (\cos (c+d x)+1))^{7/2}}+\frac{7 i e^{\frac{1}{2} i (c+d x)} \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \cos ^7\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (64 \sinh ^{-1}\left (e^{i (c+d x)}\right )+91 \sqrt{2} \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )-64 \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )\right )}{8 \sqrt{2} d \sqrt{1+e^{2 i (c+d x)}} (a (\cos (c+d x)+1))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(9/2)/(a + a*Cos[c + d*x])^(7/2),x]

[Out]

(((7*I)/8)*E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(64*ArcSinh[E^(I*(c + d*x))] +
91*Sqrt[2]*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] - 64*ArcTanh[Sqrt[1 + E^((2*
I)*(c + d*x))]])*Cos[c/2 + (d*x)/2]^7)/(Sqrt[2]*d*Sqrt[1 + E^((2*I)*(c + d*x))]*(a*(1 + Cos[c + d*x]))^(7/2))
+ (Cos[c/2 + (d*x)/2]^7*Sqrt[Cos[c + d*x]]*((16*Cos[(d*x)/2]*Sin[c/2])/d + (16*Cos[c/2]*Sin[(d*x)/2])/d + (523
*Sec[c/2]*Sec[c/2 + (d*x)/2]^2*Sin[(d*x)/2])/(24*d) - (15*Sec[c/2]*Sec[c/2 + (d*x)/2]^4*Sin[(d*x)/2])/(4*d) +
(Sec[c/2]*Sec[c/2 + (d*x)/2]^6*Sin[(d*x)/2])/(3*d) + (523*Sec[c/2 + (d*x)/2]*Tan[c/2])/(24*d) - (15*Sec[c/2 +
(d*x)/2]^3*Tan[c/2])/(4*d) + (Sec[c/2 + (d*x)/2]^5*Tan[c/2])/(3*d)))/(a*(1 + Cos[c + d*x]))^(7/2)

________________________________________________________________________________________

Maple [B]  time = 0.408, size = 464, normalized size = 1.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(9/2)/(a+cos(d*x+c)*a)^(7/2),x)

[Out]

1/384/d*2^(1/2)/a^4*cos(d*x+c)^(9/2)*(-1+cos(d*x+c))^7*(a*(1+cos(d*x+c)))^(1/2)*(192*2^(1/2)*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*cos(d*x+c)^4+907*cos(d*x+c)^3*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+1344*arctan(sin(d*x+c
)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)+1911*arcsin((-1+cos(d*x+c))/si
n(d*x+c))*cos(d*x+c)^2*sin(d*x+c)+343*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+2688*cos(d*x+c)*2
^(1/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*sin(d*x+c)+3822*arcsin((-1+cos(d*x+c))/
sin(d*x+c))*cos(d*x+c)*sin(d*x+c)-875*2^(1/2)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+1344*arctan(sin(d*x
+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*2^(1/2)*sin(d*x+c)+1911*arcsin((-1+cos(d*x+c))/sin(d*x+c))*s
in(d*x+c)-567*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))/(cos(d*x+c)/(1+cos(d*x+c)))^(9/2)/sin(d*x+c)^15

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{9}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(9/2)/(a*cos(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

Fricas [A]  time = 6.25466, size = 797, normalized size = 3.14 \begin{align*} -\frac{1911 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{4} + 4 \, \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 2 \,{\left (192 \, \cos \left (d x + c\right )^{3} + 1099 \, \cos \left (d x + c\right )^{2} + 1442 \, \cos \left (d x + c\right ) + 567\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2688 \,{\left (\cos \left (d x + c\right )^{4} + 4 \, \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )}{384 \,{\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

-1/384*(1911*sqrt(2)*(cos(d*x + c)^4 + 4*cos(d*x + c)^3 + 6*cos(d*x + c)^2 + 4*cos(d*x + c) + 1)*sqrt(a)*arcta
n(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*(192*cos(d*x + c)^3 + 1099*c
os(d*x + c)^2 + 1442*cos(d*x + c) + 567)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 2688*(cos(
d*x + c)^4 + 4*cos(d*x + c)^3 + 6*cos(d*x + c)^2 + 4*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)
*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x
+ c)^2 + 4*a^4*d*cos(d*x + c) + a^4*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(9/2)/(a+a*cos(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{9}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(9/2)/(a*cos(d*x + c) + a)^(7/2), x)